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ABSTRACT 

Extracting genomic DNA from complex biological sample matrices is often the first step 

in numerous molecular biology procedures such as polymerase chain reaction (PCR), cloning, 

and gene therapy. Obtaining high yields and pure DNA presents a significant sample preparation 

challenge in nucleic acid analysis. Current methodologies such as the phenol-chloroform 

extraction use toxic organic solvents and commercially available kits are often very expensive 

and have limited reusability. Magnetic ionic liquids (MILs) have gained popularity as 

inexpensive, environmentally benign and tunable extraction solvents. MILs are a subclass of 

ionic liquids containing a paramagnetic component in the cation or anion, allowing them to be 

manipulated using an external magnetic field. This thesis describes the use of a new class of 

MILs featuring metal-containing cations for DNA extraction and their compatibility with 

fluorescence-based detection methods.  Two studies were conducted to address this goal. The 

first study focused on the DNA extraction efficiency of a new class of MILs using in situ 

dispersive liquid-liquid microextraction (DLLME) versus conventional DLLME to assess the 

extraction of DNA sequences of varied sizes. Extraction efficiencies were obtained using indirect 

detection using anion-exchange high performance liquid chromatography with diode array 

detection and fluorescence spectroscopy. However, to minimize steps in the sample preparation 

process, it is useful to directly analyze the DNA within the enriched MIL microdroplet therefore, 

in a second study the fluorescence quenching effects of the MIL were evaluated. These studies 

provide an insight into how the paramagnetic metal (Ni, Co, Mn) and ligand used in the design 

of the MIL can be tailored in order to achieve highly efficient DNA extraction and the 

subsequent influence of the MIL on the fluorescence signal in downstream analysis.
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CHAPTER 1.    GENERAL INTRODUCTION 

1.1. Brief Overview of DNA Extraction and Purification Methods 

Deoxyribonucleic acid (DNA) is the genetic material found in all organisms [1]. DNA 

analysis is a critical component in numerous applications in medicine [2], forensics [3], 

molecular biology [4] and food safety [5]. Prior to DNA analysis, the extraction and purification 

of DNA from biological matrices must be performed. Obtaining high quality DNA is crucial for 

the success of downstream applications such as polymerase chain reaction (PCR) and 

fluorescence-based assays [6, 7]. Nucleic acid extraction and purification procedures are often 

lengthy and tedious; therefore, they have been considered a hindrance in the sample preparation 

workflow.    

Traditional nucleic acid purification techniques include liquid-liquid extraction (LLE) 

and solid-phase extraction (SPE) [6]. The most commonly used LLE procedure uses phenol and 

chloroform, where, after cell lysis using heat or surfactants, DNA is extracted into the aqueous 

phase and the other cellular components (e.g., proteins and lipids) partition into the organic 

phase [6]. Although the phenol-chloroform extraction method can be used for a variety of sample 

matrices and large amounts of DNA can be obtained, it uses toxic organic solvents, involves 

multiple steps, and lacks selectivity. Many commercially available kits contain a solid-phase 

support such as silica, cellulose, magnetic particles, or an anion-exchange resin [6]. These kits 

can only be used a limited number of times, are very costly and may require specific equipment 

for use. Due to the aforementioned drawbacks of current LLE and SPE methods for nucleic acid 

extractions, the use of ionic liquids (ILs) and their magnetic counterparts, magnetic ionic liquids 

(MILs), in bioanalytical sample preparation methodologies has grown in recent years [8]. 
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1.2. Introduction to Magnetic Ionic Liquids in DNA Extractions and Analysis 

ILs are molten salts comprised entirely of ions with melting points at or below 100 ºC [9]. 

ILs possess many unique physiochemical properties such as relatively high thermal stability, low 

melting points, variable viscosity, broad electrochemical stability and unique solvation 

capabilities of both polar and non-polar compounds [9]. The incorporation of a paramagnetic 

component in the cation and/or anion of the IL structure has created a subclass of ILs called 

magnetic ionic liquids (MILs), which have magnetic properties. The cationic and/or anionic 

moieties of both ILs and MILs can be structurally tuned for specific applications and interactions 

with certain analytes, which has immensely popularized their use in analytical chemistry. Some 

common cations and anion structures of ILs and MILs are shown in Figure 1.1. 

 

Figure 1.1. Common cations and anion structures used in ILs and MILs. 

 

ILs and MILs have been used in a variety of microextraction procedures for the 

preconcentration of DNA such as single-drop microextraction (SDME), solid-phase 
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microextraction (SPME), and dispersive liquid-liquid microextraction (DLLME). In SDME, both 

direct immersion and headspace sampling methods can be used. In this technique, analytes 

partition from the aqueous phase or headspace into a microdroplet extraction phase suspended 

from a syringe needle or magnetic rod [10]. Due to the small surface area of the microdroplet, 

long extraction times are needed in SDME to achieve high extraction efficiencies [11, 12]. In 

SPME, a fiber is coated with an extraction material, such as a polymeric ionic liquid, which is 

reusable upon desorption of the extracted analytes [13]. However, the extraction and desorption 

processes can be lengthy, which decreases the overall sample throughput. The drawbacks of 

these methods have led to liquid-based extraction methods such as DLLME to be more favorable 

[8].  

In conventional DLLME, a mixture of an extraction and dispersive solvent are added to 

an aqueous solution containing analytes [14]. Then, the solution is homogeneously mixed, 

generally by vortex, to promote dispersion of the microdroplets and enrichment of analytes from 

the sample matrix into the extraction phase. After the extraction is complete, centrifugation is 

typically performed to recover the extraction phase. Traditionally, hydrophobic ILs have been 

used as extraction solvents in DLLME, however recent reports using hydrophobic MILs have 

emerged, which allow for collection of the MIL extraction phase with a magnet, affording more 

efficient extraction methods [15]. In a modification of conventional DLLME called in situ 

DLLME, a hydrophilic IL, dispersive solvent and an anion-exchange reagent are added to the 

aqueous sample solution to generate a hydrophobic IL [9]. This metathesis reaction occurs 

during the extraction procedure, where numerous microdroplets of the extraction phase are 

dispersed throughout the sample solution, interacting with analytes. Higher extraction 

efficiencies are generally achieved with in situ DLLME than with conventional DLLME, 
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because the anion-exchange reaction increases the surface area of the extraction phase within the 

sample solution [16, 17]. A comparison of the conventional MIL-DLLME and in situ MIL-

DLLME methods is shown in Figure 1.2. 

 

Figure 1.2. Schematic describing conventional MIL-DLLME and in situ MIL-DLLME methods. 

 

MILs have been used for the extraction of DNA using conventional DLLME methods 

[11, 18, 19]. In these studies, the paramagnetic component of the MIL is within the anion. This 

restricts the use of these MILs in in situ DLLME because the paramagnetic anion would be 

exchanged during the metathesis reaction, thereby hindering magnetic collection of the MIL 

extraction phase. Recently, a new generation of MILs containing the paramagnetic component in 



www.manaraa.com

5 

the cation and chloride anions were applied for the extraction of DNA using in situ DLLME 

[17]. During extraction, the water-soluble MIL reacts with the 

bis[(trifluoromethyl)sulfonyl]imide anion to generate a hydrophobic MIL, immiscible with the 

aqueous phase and capable of extracting DNA. The use of these in situ formed MILs in DNA 

extractions pose many advantages over existing methodologies such as high extraction 

efficiencies and simple manipulation of the MIL due to low viscosity. Another significant 

bottleneck in DNA extraction procedures is the recovery of extracted DNA within the MIL. 

Methods directly coupling DNA extraction to downstream analysis such as PCR have been 

developed [18, 20]. Although carefully designed PCR buffers were able to alleviate any 

inhibition caused by the MIL, it is important to evaluate the effect each MIL has on the 

fluorescence signal in downstream applications due to their paramagnetic nature and so that 

fluorescence-compatible MILs can be identified. 

1.3. Organization of the Thesis 

This main goal of this thesis is to apply a new generation of MILs for the extraction of 

DNA and investigate their fluorescence quenching effects for use in bioanalytical applications. 

Based on these main objectives, the thesis is divided into the following chapters: 

• Chapter 2 describes the extraction of different sized fragments of double-stranded DNA 

(dsDNA) using in situ MIL-DLLME and conventional MIL-DLLME. The extraction 

procedure was coupled to high-performance liquid chromatography with diode array 

detection (HPLC-DAD) and fluorescence emission spectroscopy. Higher extraction 

efficiencies were found for the in situ formed MILs in comparison to conventional MILs, 

both containing the paramagnetic component in the cation, and a previous generation of 

MIL, with the paramagnetic component in the anion.  
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• Chapter 3 investigates the fluorescence quenching of the in situ formed MILs with SYBR 

Green I bound with dsDNA, as the fluorophore complex. Fӧrster Resonance Energy 

Transfer and Stern-Volmer models were used to evaluate the fluorescence quenching 

effects of each component of the MIL structure. 

• Chapter 4 provides a brief summary of the work.  
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CHAPTER 2.    EXTRACTION OF DNA WITH MAGNETIC IONIC LIQUIDS USING 

IN SITU DISPERSIVE LIQUID-LIQUID MICROEXTRACTION 

Ashley N. Bowers, María J. Trujillo-Rodríguez, Muhammad Q. Farooq, and 

Jared L. Anderson 

Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA 

Modified from a manuscript published in Analytical and Bioanalytical Chemistry 

2.1. Abstract 

A new class of magnetic ionic liquids (MILs) with metal-containing cations was applied 

in in situ dispersive liquid-liquid microextraction (DLLME) for the extraction of long and short 

double-stranded DNA. For developing the method, MILs comprised of N-substituted imidazole 

ligands (with butyl-, benzyl-, or octyl-groups as substituents) coordinated to different metal 

centers (Ni2+, Mn2+ or Co2+) as cations, and chloride anions were investigated. These water-

soluble MILs were reacted with the bis[(trifluoromethyl)sulfonyl]imide anion during the 

extraction to generate a water immiscible MIL capable of preconcentrating DNA. The feasibility 

of combining the extraction methodology with anion-exchange high performance liquid 

chromatography with diode array detection (HPLC-DAD) or fluorescence spectroscopy was 

studied. The method with the Ni2+ and Co2+-based MILs was easily combined with fluorescence 

spectroscopy and provided a faster and more sensitive method than HPLC-DAD for the 

determination of DNA. In addition, the method was compared to conventional DLLME using 

analogous water immiscible MILs. The developed in situ MIL-DLLME method required only 3 

min for DNA extraction and yielded 1.1-1.5 times higher extraction efficiency (EFs) than the 

conventional MIL-DLLME method. The in situ MIL-DLLME method was also compared to the 

trihexyl(tetradecyl)phosphonium tris(hexafluorocetylaceto)nickelate(II) MIL, which has been 

used in previous DNA extraction studies. EFs of 42-99% were obtained using the new generation 
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of MILs, whereas EFs of only 20-38% were achieved with the phosphonium MIL. This new 

class of MILs are simple and inexpensive to prepare. In addition, the MILs present operational 

advantages such as easier manipulation in comparison to hydrophobic MILs, which can have 

high viscosities. These MILs are a promising new class of DNA extraction solvents that can be 

manipulated using an external magnetic field. 

Keywords: DNA; magnetic ionic liquids; in situ dispersive liquid-liquid microextraction; 

high performance liquid chromatography; fluorescence spectroscopy 

2.2. Introduction  

DNA is often regarded as the central database of the cell, controlling cell growth, 

maintenance, and replication [1]. DNA analysis is routinely used in many fields including 

forensics [2], anthropology [3], clinical diagnostics [4], genetics [5] and pharmaceuticals [6]. 

Isolating genomic DNA from cells is often the first step in numerous molecular biology 

procedures used in these fields such as quantitative polymerase chain reaction (qPCR), gene 

expression, and gene therapy [7, 8]. These techniques require high quality DNA and their 

success is often affected by DNA purity and integrity [9]. Obtaining high yields and pure DNA 

from complex biological matrices presents a significant sample preparation challenge in nucleic 

acid analysis. 

Current methodologies for nucleic acid purification involve solution-based or column-

based protocols [7]. Many commercially available kits use solid or semisolid sorbent phases such 

as anion-exchange spin columns, silica-based membranes, and magnetic particles [7]. However, 

these kits often are very expensive and have limited reusability. Conventional liquid-liquid 

extraction (LLE) approaches to purify nucleic acids use phenol and chloroform [7]. Although 

high quality nucleic acid can be obtained, some organic solvents such as phenol and chloroform 

can be toxic and environmentally unfriendly. In order to reduce the use of harmful organic 
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solvents and provide selectivity in the extraction, ionic liquids (ILs), and their magnetic analogs, 

magnetic ionic liquids (MILs), have grown in popularity as extraction solvents over the past 

decade [10–18]. 

ILs are molten salts with melting points below 100 ºC and are comprised entirely of ions 

[19]. ILs have negligible vapor pressure at room temperature, relatively high thermal stability, as 

well as variable viscosity [13]. MILs are a subclass of ILs which contain a paramagnetic metal in 

the cation or anion, allowing the compound to possess magnetic properties [10]. The cationic and 

anionic moieties of ILs and MILs can often be tuned for specific applications, including for 

nucleic acid extractions [11, 20, 21]. 

Previous studies have used ILs or IL-modified materials [22] in different extraction and 

microextraction techniques for nucleic acids, including single drop microextraction (SDME) [21, 

23], dispersive liquid-liquid microextraction (DLLME) [20, 21, 23–27], aqueous biphasic 

systems (ABS) [28, 29] and solid-phase microextraction (SPME) [30–34]. SPME often requires 

long extraction and desorption times; therefore, IL-based liquid-phase extraction techniques such 

as DLLME are generally preferred [35]. Conventional DLLME involves the rapid injection of a 

mixture of extraction and dispersive solvents into an aqueous sample, resulting in the enrichment 

of analytes from the sample matrix [36]. In this technique, a hydrophobic IL is typically used as 

the extraction solvent. However, the use of MILs containing paramagnetic anions has also been 

described [37, 38]. In this case, magnetic separation of the MIL can be performed after DLLME, 

which simplifies the overall procedure. In a variation of the technique called in situ DLLME, a 

hydrophilic IL is mixed with a metathesis reagent, promoting an anion-exchange reaction that 

generates a hydrophobic IL. This reaction creates numerous finely dispersed hydrophobic IL 

microdroplets capable of interaction with analytes. The anion-exchange process also increases 
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the surface area of the IL extraction solvent, generally leading to higher extraction efficiencies 

[17, 39, 40]. The use of MILs for in situ DLLME was recently possible due to the design of 

MILs that possess a paramagnetic component in the cation of their structure [41–43]. Since the 

paramagnetic component is within the cation of the MIL, it is not exchanged during the 

metathesis reaction allowing magnetic separation to be performed. 

This study constitutes the first report of in situ DLLME using MILs for the extraction of 

DNA. The optimal extraction efficiency of different DNA sizes was investigated using ten types 

of MILs. The extraction procedure is combined with high performance liquid chromatography 

with diode array detection (HPLC-DAD) and fluorescence emission spectroscopy. The superior 

extraction performance of the developed in situ MIL-DLLME method is confirmed by its 

comparison with conventional DLLME using both MILs with the paramagnetic component in 

the cation and a previous generation of MIL, with the paramagnetic component in the anion. 

MILs developed in situ demonstrated superior extraction efficiency and are easier to work with 

in comparison to hydrophobic MILs, which can have high viscosities and are difficult to pipette 

[10, 44–46]. 

2.3. Experimental 

2.3.1. Chemicals, Reagents, Materials  

Different sized fragments of double-stranded DNA  (dsDNA) (~20 kbp salmon testes 

DNA, stDNA; ~250-500 bp stDNA; and 20 bp DNA) were employed in this study. stDNA 

(approximately 20 kbp) was acquired from Sigma-Aldrich (St. Louis, MO, USA). To generate 

shorter duplex DNA fragments of approximately 250 to 500 bp, stDNA was sheared for 60 

cycles (1 cycle: 30 s on and 30 s off) through sonication in an ice bath. Agarose from 

LabExpress (Ann Arbor, MI, USA) at 1% w/v concentration was employed for electrophoretic 

separation to confirm the size of the sheared stDNA fragments. SYBR Safe DNA gel stain was 
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purchased from Invitrogen (Waltham, MA, USA). A l Kb Plus DNA Ladder was purchased from 

Gold Biotechnology (St. Louis, MO, USA). A synthetic oligonucleotide (sequence: 5’-AGG 

GCG TGA ATG TAA GCG TG-3’ annealed to its complementary strand) was purchased from 

Integrated DNA Technologies (Coralville, IA, USA). Ethylenediaminetetraacetic acid (EDTA, 

ACS reagent, 99.4-100.06%) was purchased from Sigma-Aldrich. 

Tris(hydroxymethyl)aminomethane (Tris base) and the corresponding hydrochloride salt (Tris-

HCl) were purchased from Research Products International (Mount Prospect, IL, USA). SYBR 

Green I (10000X) was purchased from Life Technologies (Eugene, OR, USA). Sodium chloride 

(100.1%), sodium hydroxide (99.4%) and N,N-dimethylformamide (99.9%) were purchased 

from Fisher Scientific (Fair Lawn, NJ, USA). Ultrapure water (18.2 MΩ·cm) was obtained from 

a Milli-Q water purification system (Millipore, Bedford, MA, USA). 

For the synthesis of MILs, the reagents cobalt(II) chloride (97%), acetonitrile (99.9%) 

and 1-butylimidazole (98%) were purchased from Sigma-Aldrich. Nickel(II) chloride (98%), 1-

benzylimidazole (99%), 1,1,1,5,5,5-hexafluoroacetylacetone (99%), and ammonium hydroxide 

(28-30% solution in water) were purchased from Acros Organics (Morris Plains, NJ, USA). 

Manganese(II) chloride tetrahydrate (98.0-101.0%) was purchased from Alfa Aesar (Ward Hill, 

MA, USA). Trihexyl(tetradecyl)phosphonium chloride (97.7%) was purchased from Strem 

Chemicals (Newburyport, MA, USA). Lithium bis[(trifluoromethyl)sulfonyl]imide ([Li+][NTf2
-]) 

was purchased from SynQuest Laboratories (Alachua, FL, USA). Anhydrous diethyl ether 

(99.0%) was purchased from Avantor Performance Materials Inc. (Center Valley, PA, USA). 

Ethyl alcohol was purchased from Decon Laboratories, Inc. (King of Prussia, PA, USA). 

Chemical structures of the ten different MILs examined in this study are shown in Figure 

1. Nine of the MILs have a general chemical structure based on a cation comprised of four N-
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substituted imidazole ligands (RIm, with R = B for butyl-, Bn for benzyl-, and O for octyl-) 

coordinated to different metal centers (M = Ni2+, Mn2+ or Co2+), and chloride or 

bis[(trifluoromethyl)sulfonyl]imide ([NTf2
-]) anions. The water-soluble MILs ([Ni(BIm)4

2+]2[Cl-

], [Ni(BnIm)4
2+]2[Cl-], [Mn(BIm)4

2+]2[Cl-] and [Co(BIm)4
2+]2[Cl-]) were used for in situ 

DLLME. The corresponding hydrophobic form of these MILs were generated by a metathesis 

reaction with [Li+][NTf2
-] and used in conventional DLLME. Stock solutions of the MILs in 

chloride anion form were prepared in ultrapure water at a concentration of 20 mg·mL-1, except 

for the [Ni(BIm)4
2+]2[Cl-] MIL, which had a concentration of 25 mg·mL-1. An aqueous solution 

of [Li+][NTf2
-] containing a concentration of 600 mg·mL-1 was used for in situ DLLME. To 

compare to previous MILs used in DNA extractions, the trihexyl(tetradecyl)phosphonium 

tris(hexafluorocetylaceto)nickelate(II) ([P66614
+][Ni(II)(hfacac)3

-]) MIL was used, which is 

hydrophobic and is composed of Ni(II) coordinated to three hexafluoroacetylacetonate ([hfacac-

]) ligands in the anion. 

 

Figure 1. Chemical structures of the MILs examined in this study (a) [Ni(BIm)4
2+]2[Cl-], 

[Mn(BIm)4
2+]2[Cl-] and [Co(BIm)4

2+]2[Cl-]). (b) [Ni(BnIm)4
2+]2[Cl-]. (c) [Ni(BIm)4

2+]2[NTf2
-], 
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[Mn(BIm)4
2+]2[NTf2

-] and [Co(BIm)4
2+]2[NTf2

-]. (d) [Ni(BnIm)4
2+]2[NTf2

-]. (e) 

[Mn(OIm)4
2+]2[NTf2

-]. (f) [P66614
+][Ni(II)(hfacac)3

-]. 

 

2.3.2. Instrumentation 

An Agilent Technologies 1260 Infinity high-performance liquid chromatograph (Santa 

Clara, USA) consisting of a quaternary pump, a column thermostat, manual injector and diode 

array detector (DAD) was used for the indirect determination of DNA. All chromatographic 

separations were performed using an anion exchange column (TSKgel DEAE-NPR, 35 mm × 4.6 

mm i.d., 2.5 µm) equipped with a guard column (TSKgel DEAE-NPR, 5 mm × 4.6 mm i.d., 5 

µm) from Tosoh Bioscience (King of Prussia, PA, USA). Mobile phase comprised of (A) 20 mM 

Tris-HCl (pH 8) and (B) 1 M NaCl/20 mM Tris-HCl (pH 8) at a flow rate of 0.5 mL·min-1 was 

employed for the separations. Gradient elution was performed by increasing from 20% to 100% 

B over 20 min, and detection at 260 nm. The column was maintained at 40 ºC. 

Fluorescence emission spectra were acquired using a Synergy H1 Multi-Mode microplate 

reader (Winooski, VT, USA) and 384-well plate, black polystyrene, flat bottom microplates 

(Corning, Corning, NY, USA). Fluorescence emission measurements were obtained at an 

excitation wavelength of 480 nm. The emission intensity was scanned from 510 nm to 650 nm 

with 1 nm resolution. Measurements were acquired in top-read mode. 

A Shimadzu AA-7000 atomic absorption spectrophotometer (AAS) equipped with an 

ASC-7000 auto sampler (Kyoto, Japan) was used for AA measurements. Nickel and manganese 

Atomax hollow cathode lamps (PerkinElmer, MedTech Park, Singapore) were used for the 

determination of nickel and manganese content, respectively. Likewise, a cobalt hollow cathode 

lamp (Hamamatsu Photonics K.K., Beijing, China) was used for the detection of cobalt. 
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2.3.3. Procedures 

2.3.3.1. Synthesis of magnetic ionic liquids 

The [P66614
+][Ni(II)(hfacac)3

-] MIL was synthesized and purified following a previously 

reported procedure [47]. The MILs used for in situ and conventional DLLME were synthesized 

according to a recently reported procedure [41]. The [Ni(BnIm)4
2+]2[Cl-] MIL was synthesized 

following the same procedure, except 3.16 mmol of NiCl2 was added to 12.64 mmol of 1-

benzylimidazole in a round bottom flask with 10 mL of water and refluxed at 80 ºC for 12 hours. 

The solvent was removed under reduced pressure at 40 ºC, and the MIL product was washed 

with diethyl ether and dried in a vacuum oven for 24 hours at 40 ºC. 

2.3.3.2. In situ dispersive liquid-liquid microextraction 

A general schematic of the in situ DLLME process is shown in Figure 2. All extractions 

were performed in 4 mL clear glass vials with a screw hole cap containing a 

polytetrafluoroethylene (PTFE)/silicone septum (Supelco, Bellefonte, PA). An aqueous solution 

of the MIL in the chloride form (17 to 24 µmol) was added to an aqueous solution of DNA (~20 

kbp stDNA, ~250-500 bp stDNA or 20 bp DNA). The DNA concentration and the total 

extraction volume were kept constant at 2 nM and 2 mL, respectively. A volume of 300 µL of 

dimethylformamide was then added as a dispersive solvent. The vial was homogeneously mixed 

with a vortex from Fisher Scientific at 2100 rpm for 10 seconds, followed by the addition of the 

[Li+][NTf2
-] anion-exchange reagent at a MIL: [Li+][NTf2

-] molar ratio of 1:1.5, 1:2, 1:2.5 or 

1:2.8, depending on the experiment. The vial was then mixed by vortex for 3 min to facilitate the 

metathesis reaction and form a hydrophobic MIL droplet. After droplet formation, the in situ 

generated hydrophobic MIL settled at the bottom of the vial, and an aliquot of the upper aqueous 

phase was used for indirect determination of the DNA extraction efficiency (EF) by HPLC-DAD 
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or fluorescence emission spectroscopy. The specific conditions for each MIL are shown in Table 

A1 of Appendix A. 

 

 

Figure 2. Schematic describing the in situ DLLME method using MILs for the extraction of 

DNA.  

 

2.2.3.3. Conventional dispersive liquid-liquid microextraction 

The overall process for the conventional DLLME method is shown in Figure A1 of 

Appendix A. An amount of 16 to 21 µmol of the hydrophobic MIL (in [NTf2-] form) was 

dissolved in 300 µL of dimethylformamide as a dispersive solvent. The mixture was then added 

to a 2 nM aqueous solution of DNA (~20 kbp stDNA, ~250-500 bp stDNA or 20 bp DNA) in a 4 

mL extraction vial and homogeneously vortexed at 2100 rpm for 5 min to promote dispersion of 

the hydrophobic MIL throughout the aqueous phase containing the DNA. The MIL was allowed 
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to settle at the bottom of the vial and an aliquot of the aqueous phase was taken for indirect 

determination of DNA EF by HPLC-DAD or fluorescence emission spectroscopy. The same 

procedure was followed for the [P66614
+][Ni(II)(hfacac)3

-] MIL, except 15 µmol of the MIL was 

directly added to the aqueous DNA solution without the addition of dimethylformamide, to 

prevent the MIL from dissolving completely without droplet formation.  The amount of each 

MIL used for extractions are provided in Table A2 of Appendix A. 

2.2.3.4. Determination of extracted DNA and free metal remaining in aqueous phase 

Indirect determination of the extracted DNA was performed by two different methods: 

HPLC-DAD and fluorescence spectroscopy. HPLC-DAD separation and detection of the DNA 

was performed by injecting 20 µL of the aqueous phase after extraction to the system using the 

conditions detailed in Section 2.3.2. Fluorescence emission spectra were obtained by adding 0.2 

µL of a 50× SYBR Green I stock solution to a 9.8 µL aliquot of the aqueous phase after 

extraction. The SYBR Green I dye and the aqueous phase aliquot was mixed for 5 s with a 

vortex mixer (Barnstead Thermolyne Type 16700, Dubuque, IA, USA) and centrifuged for 3 s 

(Eppendorf Centrifuge 5424, Hamburg, Germany). The solutions were transferred to the wells in 

a black microplate and measurements were performed in triplicate at room temperature (~23 ºC). 

Flame atomic absorption spectroscopy (FAAS) was performed to determine the amount 

of metal remaining in the aqueous phase after the in situ DLLME procedure. The method of 

standard addition was employed by adding a fixed volume of 250 µL of the aqueous phase after 

in situ DLLME to different NiCl2, MnCl2 or CoCl2 standards with concentrations ranging 

between 0-100 µM. 
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2.4. Results and Discussion 

2.4.1. Comparison of stDNA Extraction Efficiency Using Different Methods 

In this study, up to 10 different MILs were applied in two different extraction methods (in 

situ DLLME and conventional DLLME). Different MIL: [Li+][NTf2
-] molar ratios were selected 

for performing in situ DLLME experiments, as explained in Section 2.3.3.2. Different molar 

ratios were needed, based on the nature of the MIL and in order to obtain a magnetic liquid after 

the metathesis reaction. HPLC-DAD was initially studied as the separation and indirect detection 

method. However, this approach was time consuming, required greater amounts of solvents, and 

frequent cleaning of the column to prevent analyte carryover. Pressure issues in the system were 

observed after subsequent injections. This problem was likely due to interactions with 

components remaining in the aqueous phase after extraction (such as the MIL, metal, ligands and 

unreacted [Li+][NTf2
-]). Another possible reason for pressure issues could be the weak anion 

exchange groups modified on the surface of the stationary phase. Fluorescence emission 

spectroscopy was studied as an alternative to HPLC-DAD and was found to be simpler and 

required less solvent. In both methods, the aforementioned components remaining in the aqueous 

phase after extraction can possibly affect the signal. 

A comparison of the results obtained with these two analytical techniques was carried out 

for all extractions performed with different MILs. These experiments were performed with 

stDNA spiked samples. The EF was calculated using Eq. (1). 

 

𝐸𝐹 = (1 −
𝑃𝑎𝑞

𝑃𝑠𝑡𝑑
) × 100        Eq. (1) 

 

where Paq is the peak area of DNA in the aqueous phase after extraction in HPLC-DAD or the 
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mean maximum relative fluorescence units (mean max. RFU) obtained from the emission 

spectrum in fluorescence measurements. Similarly, Pstd  is the peak area or mean max. RFU 

obtained from measurement of a 2 nM DNA standard solution, which corresponds to the initial 

DNA concentration used in extractions. A comparison of the EF values was established by using 

the Student’s t-test at a 95% confidence level (Table A3 of Appendix A). In general, no 

significant EF differences were found for various MILs using the HPLC-DAD or fluorescence 

emission detection methods (Table A3 and Figure A3 of Appendix A). These results indicate that 

SYBR Green I underwent a selective interaction with the DNA remaining after extraction, and 

no other component of the aqueous sample caused an interference in the determination. An 

exception of this behavior was observed with the [Mn(BIm)4
2+]2[Cl-] MIL for which the 

performed statistical analysis revealed differences between the detection methods, likely due to 

the formation of Mn(II,III) oxide precipitates (i.e., MnO, Mn2O3, MnO2, and Mn2O7 [48]). In 

fact, the formation of a precipitate was observed after storing aqueous solutions of 

[Mn(BIm)4
2+]2[Cl-] longer than 2 h. The [Mn(BIm)4

2+]2[Cl-] MIL precipitate was characterized 

by Raman spectroscopy and X-ray diffraction (XRD) and compared to those of manganese(II) 

oxide and manganese(III) oxide. Both the Raman spectrum and XRD pattern of the 

[Mn(BIm)4
2+]2[Cl-] MIL precipitate and Mn(II,III) oxides were similar (Figure A6 of Appendix 

A). [Mn(BIm)4
2+]2[Cl-] was the only MIL in which the formation of precipitate was observed, 

likely due to the weaker stability of Mn(II) imidazole complexes compared to the analogous 

Co(II)- and Ni(II)-imidazole complexes. The reported stability constants (log K), found through 

potentiometric pH titrations (I = 0.5 M, NaNO3; 25 ᵒC), were 1.42 ± 0.01, 2.48 ± 0.02 and 3.09 ± 

0.01, for the complexes [MnIm2+], [CoIm2+] and [NiIm2+], respectively [49]. With these 

considerations, HPLC-DAD was chosen to perform indirect detection of DNA with all of the 
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studied Mn(II)-based MILs, including [Mn(BIm)4
2+]2[Cl-], [Mn(BIm)4

2+]2[NTf2
-] and 

[Mn(OIm)4
2+]2[NTf2

-]. 

The Student’s t-test was not used to compare detection methods for the [Ni(BnIm)4
2+]2[Cl-

], [Co(BIm)4
2+]2[Cl-] and [Co(BIm)4

2+]2[NTf2
-] MILs because no stDNA was detected in HPLC-

DAD. These results indicated almost quantitative extraction of the DNA, but also that the indirect 

method was not the most suitable for studying the extraction performance of the DLLME methods. 

The data obtained with the benzylimidazole-based MILs using HPLC-DAD agreed with those 

obtained by fluorescence, for which an EF up to 99% was obtained, indicating quantitative 

extraction of stDNA. 

Figure 3 shows the EF obtained for the extraction of 3 different DNA sizes with all MILs. 

The extraction method was combined with HPLC-DAD or fluorescence and the detection 

method was based on the aforementioned considerations (i.e., experiments using 

[Mn(BIm)4
2+]2[Cl-], [Mn(BIm)4

2+]2[NTf2
-] and [Mn(OIm)4

2+]2[NTf2
-] MILs were analyzed by 

HPLC-DAD, and the remaining MILs using fluorescence spectroscopy). Relative standard 

deviations (RSD) lower than 20% were obtained in all cases except for the Mn(II)-based MILs, 

where RSD values below 25% were achieved. The obtained EF values were 1.1-1.5 times higher 

when in situ DLLME was employed compared to conventional DLLME, an increase that is 

directly related to the metathesis reaction. These results were in agreement with previously 

reported in situ DLLME methods [39, 40, 42, 43, 50]. Furthermore, in both methods the use of 

dimethylformamide as disperser solvent and vortex mixing increased the dispersion of the 

hydrophobic MIL in the aqueous solution,  maximizing the contact area between the aqueous 

solution and MIL (see Figure 3). 
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Figure 3. Extraction efficiencies (% EF) of ~20 kbp stDNA (blue), ~250-500 bp stDNA 

(orange) and 20 bp DNA (gray) fragments by each of the MILs using (a) MIL-based in situ 

DLLME or (b) conventional MIL-DLLME and fluorescence emission spectroscopy detection. 

Experimental conditions (n = 3): 2 nM DNA, 2 mL total extraction volume, 15-24 µmol MIL, 300 

µL dimethylformamide dispersive solvent, 3 min vortex at 2100 rpm. Note: For in situ DLLME, a 

range of 1:1.5 to 1:2.8 molar ratio of MIL:[Li+][NTf2
-] was used, depending on the MIL. For the 

[P66614
+][Ni(II)(hfacac)3

-] MIL, no dispersive solvent was used. HPLC-DAD detection was used 

for the [Mn(BIm)4
2+]2[Cl-] MIL. 

 

2.4.2. Effect of the MIL Structure on the Extraction of DNA  

The DLLME methods described in this work are influenced by the metal center and the 

ligands that comprise the MIL. The transition metal center within the cation of the MIL can 

interact with DNA primarily through electrostatic interactions of the negatively charged 

phosphate backbone of DNA and through metal binding to the nitrogenous bases of DNA [51, 

52]. Additionally, MILs and DNA can interact through hydrogen bonding, π-π stacking and van 
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der Waals interactions [53]. IL/MIL cations can bind to the minor grooves of dsDNA through 

hydrophobic and polar interactions [54]. According to Figure 3, the Co(II)-based MILs provided 

the highest EF values (87% or greater), with almost quantitative extraction of ~20 kbp and ~250-

500 bp DNAs using both in situ and conventional DLLME. The extractions using Mn(II)-based 

MILs provided lower EF values, likely due to the weaker stability of the MIL (see Section 2.4.1). 

The substituent groups attached to the imidazole rings within the MIL structure also play 

a role in the extraction of DNA. Most of the MILs contained BIm as ligand, with the exception 

of two MILs that contained BnIm (i.e., [Ni(BnIm)4
2+]2[Cl-], and [Ni(BnIm)4

2+]2[NTf2
-]), and one 

composed of OIm (i.e., [Mn(OIm)4
2+]2[NTf2

-]). The [Mn(OIm)4
2+]2[NTf2

-] MIL was only 

applied for conventional DLLME because its corresponding chloride salt ([Mn(OIm)4
2+]2[Cl-]) 

was not water soluble; therefore, the metathesis reaction with the DNA spiked sample was not 

successful. In both extraction modes, higher EF values were obtained with Ni(II)-based MILs 

containing BnIm as opposed to BIm ligands. In these cases, the BnIm ligands not only provided 

a more hydrophobic MIL structure but also facilitated π- π stacking of the MIL with DNA. In 

conventional MIL-DLLME, the [Mn(OIm)4
2+]2[NTf2

-] MIL provided higher EF than 

[Mn(BIm)4
2+]2[NTf2

-] for the extraction of ~20 kbp stDNA, providing evidence that imparting 

more hydrophobicity to the MIL through the addition of longer alkyl chains substituents to the 

imidazole ligand can enhance the extraction of larger DNA fragments. 

Results obtained using this new generation of MILs were also compared to the 

[P66614
+][Ni(II)(hfacac)3

-] MIL, which has been used in previous studies for DNA extractions [23, 

25, 55]. In general, higher EF values were obtained for most of the new generation MILs, 

including those used in both in situ MIL-DLLME and conventional MIL-DLLME. For these 

materials, the paramagnetic metal is within the cation rather than the anion, and therefore in situ 
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generation of the hydrophobic MIL was possible without exchanging the paramagnetic metal 

during the metathesis reaction. Higher EF values were also obtained for the MILs containing 

[NTf2
-] anions used in conventional MIL-DLLME compared to the [P66614

+][Ni(II)(hfacac)3
-] 

MIL. This may be due to greater electrostatic interaction between the divalent metal in the cation 

and the negatively charged phosphate groups in the DNA backbone, rather than with the 

trihexyl(tetradecyl)phosphonium cation of the [P66614
+][Ni(II)(hfacac)3

-] MIL. 

2.4.3. Selectivity of MILs in the Extraction of Duplex DNA Fragments of Varying Size 

The selectivity of the MILs in the extraction of different sized fragments of double-

stranded DNA was investigated, and the results are shown in Figure 3. In general, similar EF 

values for each MIL were observed in the extraction of the ~20 kbp stDNA and the ~250-500 bp 

DNA fragments. However, the EF values were partially reduced when the method was applied 

for the extraction of 20 bp DNA. The larger-sized DNA fragments (~20 kbp stDNA and ~250-

500 bp DNA) provided a more hydrophobic environment, which increased hydrophobic 

interactions between the DNA and the MIL. Consequently, more DNA was extracted compared 

to the 20 bp DNA fragments, which are smaller and less hydrophobic. The biggest differences in 

EF were found with the Ni(II)-based MILs. Higher EF values (between 75-99%) were observed 

for the extraction of ~20 kbp stDNA and ~250-500 bp DNA fragments with the 

[Ni(BIm)4
2+]2[Cl-] and [Ni(BnIm)4

2+]2[Cl-] MILs, whereas EF values ranging between 42-60% 

were obtained for the 20 bp DNA fragment. The same trend was observed for the 

[Ni(BIm)4
2+]2[NTf2

-] and [Ni(BnIm)4
2+]2[NTf2

-] MILs with EF values between 50-73% for the 

larger DNA fragments and between 20-32% for the 20 bp DNA fragment. The 

[Mn(BIm)4
2+]2[NTf2

-] MIL extracted the ~250-500 bp DNA fragments with the highest EF value 

of 56%, whereas the EF dropped to 26% and 8% for the ~20 kbp stDNA and 20 bp DNA 

fragments, respectively. If the results of this MIL are compared to those obtained for the 
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[Mn(OIm)4
2+]2[NTf2

-] MIL, increasing the alkyl chain substituent from butyl to octyl increased 

the tendency of the MIL to extract DNA fragments of ~20 kbp. For the Co(II)-based MILs, more 

subtle differences were observed in the extraction of different sizes of DNA. 

2.4.4. Determination of Metal Ion Concentration in the Aqueous Phase After Extraction 

As previously stated, the key aspect of the in situ MIL-DLLME method is the metathesis 

reaction between the MIL and the metathesis reagent ([Li+][NTf2
-]). If this reaction is not 

complete during the extraction procedure, some of the MIL (in the chloride form) can remain 

unreacted in the aqueous phase. The yield of the metathesis reaction can depend on the extraction 

conditions, the solubility of the MIL and metathesis reagent in aqueous solution, and the water 

stability of the MILs. Furthermore, the [NTf2
-]-form of the MIL can also be found in the aqueous 

phase after extraction, as a result of partial solubility of the MIL in the aqueous solution [56]. In 

order to verify this hypothesis, AAS using the method of standard addition was applied to 

determine the amount of metal ion remaining in the aqueous phase after in situ MIL-DLLME. 

Since the metal is within the cation of the MIL, the amount of metal ion remaining in the 

aqueous phase after extraction can be directly related to the amount of the remaining MIL in both 

the [Cl-] and the [NTf2
-]-forms. The obtained results are shown in Figure A7 and Table A4 of 

Appendix A. The percentage of the MIL in the aqueous phase after extraction, SMIL, was 

calculated using Eq. (2). 

 

𝑆𝑀𝐼𝐿 =
𝐶𝑎𝑞

𝐶𝑜
× 100        Eq. (2) 

 

where Caq is the concentration of the MIL in the aqueous phase after extraction and Co is the 

initial concentration of MIL. The results indicated that 24–59%, depending on the nature of the 
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MIL, remained in the aqueous phase after in situ DLLME (Table A4 of Appendix A). Among the 

different studied MILs, a significant amount of the [Ni(BIm)4
2+]2[Cl-] MIL was detected in the 

aqueous phase after extraction (58.8% with respect to the initial amount of spiked MIL). This 

result is in accordance with the data obtained in Figure 3 which revealed a relatively low EF for 

this MIL (75.7% for ~20 kbp stDNA), in comparison to the [Ni(BnIm)4
2+]2[Cl-] and 

[Co(BIm)4
2+]2[Cl-] MILs for which almost quantitative extraction of ~20 kbp stDNA was 

observed. For the [Ni(BnIm)4
2+]2[Cl-] and [Co(BIm)4

2+]2[Cl-] MILs, 46.7% and 38.8% of MIL 

remained in the aqueous phase after extraction, respectively. Nonetheless, for in situ DLLME 

with the three aforementioned MILs, the free MIL in the aqueous phase did not significantly 

affect the fluorescence signal of DNA as the obtained fluorescence data did not statistically differ 

with respect to the HPLC-DAD data  (Table A3 and Figure A3 of Appendix A). Only 24.2% of 

the [Mn(BIm)4
2+]2[Cl-] MIL remained in the aqueous phase, indicating that the Mn(II,III) oxide 

precipitate that formed over time during the preparation of the solutions for fluorescence 

detection were likely not present in the aqueous phase during the AAS measurement. 

2.4.5. Comparison to Other Reported Methods  

DNA extraction by the in situ MIL-DLLME method was compared to other IL- and MIL-

based extraction methods reported in the literature, and is shown in Table 1. All reported 

extraction methods provided a high EF of DNA with values around 80% or greater. However, 

the developed extraction method is rapid, especially if the method is compared with those that 

used ILs [20, 24], which required centrifugation steps to recover the extraction phase. Among the 

different methods presented in Table 1 using MILs [21, 23], the present method is faster,  
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Table 1. Comparison of the developed method with other reported methods from the literature. 

Sample/DNA size Extraction method/ 

Extraction solvent/sorbent 

Analytical technique Extraction time 

(min) 

EF Ref. 

Aqueous sample/ 20 

bp DNA 

In situ MIL-DLLME/ 

[Co(BIm)4
2+]2[Cl-] and 

[Li+][NTf2
-] 

FD 3 88.05 ± 2.64% This method 

Aqueous sample/ 

~250-500 bp stDNA 

In situ DLLME/ 

[Ni(BnIm)4
2+]2[Cl-] and 

[Li+][NTf2
-] 

FD 3 99.04 ± 0.38% This method 

Aqueous sample/ ~20 

kbp stDNA 

In situ DLLME/ 

[Co(BIm)4
2+]2[Cl-] and 

[Li+][NTf2
-] 

FD 3 99.97 ± 0.03% This method 

Aqueous sample/ ~20 

kbp dsDNA 

MIL-DDEa/ [P6,6,6,14
+][FeCl4

-] HPLC-UV 30 s 93.8 ± 0.6% [21] 

Aqueous sample/ 

single-stranded KRAS 

template DNA 

MIL-SDMEb/ 

[P6,6,6,14
+][Ni(hfacac)3

-] 

qPCR 20 - [23] 

Meat samples/ 

mitochondrial DNA 

(mtDNA) 

IL-ABSc/ [Chol+][Hex-] (10 

w/v%) in sodium phosphate 

buffer (50 mM, pH = 8.5) 

qPCR 15 - [29] 

Maize powder/ 

genomic DNA (~10 

kbp) 

IL-ABSc/ [C2MIm+][Me2PO4
-] 

(10 w/v%) in sodium phosphate 

buffer (50 mM, pH = 8.5) 

qPCR 5 min -- [28] 

Aqueous sample/ ~20 

kbp stDNA 

In situ IL-DLLME/ 

[C16POHIm+][Br-] and 

[Li+][NTf2
-] 

HPLC-UV 30 min 95.2 ± 0.4% [20] 

Aqueous sample/ calf 

thymus DNA and 

salmon testes DNA 

IL-DLLME/ [BMIm+][PF6
-] FD 10 min 99.5% [24] 

a MIL-Based Dispersive Droplet Extraction. 
b MIL-Based Single-drop Microextraction. 
c Liquid extraction with an IL-aqueous buffer system.
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requiring only 3 min for extraction, with the exception of the method reported by Clark et al. that 

reported an extraction time of 30 s using MIL-based dispersive droplet extraction (MIL-DDE) 

with the [P6,6,6,14
+][FeCl4

-] MIL [21]. In any case, the in situ MIL-DLLME method presented in 

this work is simple to execute due to the low viscosity of the MIL solution in the chloride form, 

which is used initially in the extraction. Furthermore, this new generation of MILs are easy to 

prepare and are water stable (except for Mn(II)-based MILs). 

2.5. Conclusions  

This study constitutes the first report of the in situ formation of hydrophobic MILs for the 

extraction of DNA. This generation of MILs are easy and inexpensive to prepare making them a 

more affordable alternative for DNA extraction than commercially available DNA extraction 

kits. At the same time, these MILs possess three important features: (1) paramagnetic nature, 

resulting in a hydrophobic MIL droplet that can be retrieved with an external magnetic field, (2) 

their paramagnetic component is in the cation, which allows for the in situ generation of the 

hydrophobic MIL during extraction, and (3) low viscosity, which is convenient for its 

manipulation and transfer. 

The in situ MIL-DLLME method can be combined with both HPLC-DAD or 

fluorescence detection, with the latter method more suitable for faster detection of DNA. 

Different sized fragments of dsDNA (20 bp, ~250-500 bp and ~20 kbp DNA) were extracted by 

in situ MIL-DLLME and conventional MIL-DLLME where 1.1-1.5 times higher EFs were 

obtained using in situ MIL-DLLME. Among the different studied MILs, the Co-based MILs 

([Co(BIm)4
2+]2[Cl-] and [Co(BIm)4

2+]2[NTf2
-]) provided the highest EFs (>85%). The Ni-based 

MILs ([Ni(BIm)4
2+]2[Cl-], [Ni(BIm)4

2+]2[NTf2
-], [Ni(BnIm)4

2+]2[Cl-] and [Ni(BnIm)4
2+]2[NTf2

-

]) showed the greatest selectivity in extracting the different sized duplex DNA fragments, with 
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higher EF values obtained for the extraction of ~20 kbp stDNA and ~250-500 bp DNA 

fragments than the 20 bp DNA fragment. 

The in situ MIL-DLLME method showed advantages over existing DNA extraction 

protocols due to its speed (3 min per extraction) and simplicity. Future studies are focused on the 

application of the in situ MIL-DLLME method to real biological samples as well as designing a 

MIL-compatible qPCR buffer in order to facilitate direct analysis of extracted DNA from the 

MIL droplet. 
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CHAPTER 3.    FLUORESCENCE QUENCHING OF THE SYBR GREEN I-dsDNA 

COMPLEX BY IN SITU MAGNETIC IONIC LIQUIDS 

Ashley N. Bowers, Kalyan Santra, María J. Trujillo-Rodríguez, Anthony Song, Jacob W. Petrich, 

and Jared L. Anderson 

Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA 

Modified from a manuscript to be submitted to Journal of Physical Chemistry 

3.1. Abstract 

Magnetic ionic liquids (MILs) with metal-containing cations are promising extraction 

solvents that provide fast and high efficiency extraction of DNA through the in situ generation of 

a hydrophobic MIL-microdroplet in a methodology called in situ dispersive liquid-liquid 

microextraction. To consolidate the sample preparation workflow, it is desirable to directly use 

the DNA enriched MIL-microdroplet in the subsequent analytical detection technique. 

Fluorescence-based techniques employed for DNA detection, oftentimes use SYBR Green I, a 

DNA binding dye which exhibits optimal fluorescence when bound to double-stranded DNA. 

However, the presence of a metal in the cation or anion of the MIL structure may hinder the 

fluorescence signal of this complex due to quenching. In this study, the fluorescence quenching 

effects of the aforementioned new generation of MILs using a SYBR Green I dye-double 

stranded DNA complex were evaluated using Fӧrster Resonance Energy Transfer and quantified 

using Stern-Volmer models. The studied MILs were based on N-substituted imidazole ligands 

(with butyl- and benzyl- groups as substituents) coordinated to Ni2+ or Co2+ metal centers as 

cations, and chloride anions. The quenching effect of NiCl2 and CoCl2 salts and the 1-butyl-3-

methylimidazolium chloride ionic liquid on the fluorophore complex was also studied to 

understand the components of the MIL structure that are responsible for quenching. The metal of 

the MIL was found to be the main component in their structure contributing to fluorescence 
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quenching. Fӧrster critical distances between 11.9 and 18.8 Å were obtained for the MILs, 

indicating that quenching is likely not due to non-radiative energy transfer but rather through 

spin-orbit coupling or excited-state electron transfer.  

Keywords: DNA; in situ magnetic ionic liquids; fluorescence spectroscopy; fluorescence 

quenching; fluorescence resonance energy transfer; Stern-Volmer relationship 

3.2. Introduction 

DNA analysis is central to many applications in clinical diagnostics,1 personalized 

medicine,2 forensics,3 and archaeology.4 The majority of DNA analysis methodologies use 

polymerase chain reaction (PCR)5 and fluorescence-based assays.6 In quantitative PCR (qPCR), 

the amplified DNA binds to a fluorescent dye, such as SYBR Green I, and the amount of 

amplified DNA can be monitored in real-time by the increase in the fluorescent signal of the dye-

DNA fluorophore complex.7  

For performing both PCR and fluorescence-based DNA analysis, sample pretreatment 

steps are generally required to extract and purify DNA from the biological matrix. Small 

amounts of contaminating species (such as other nucleic acids, proteins, etc.) and the quality of 

the DNA obtained can affect the reliability of the results.8,9 Traditional DNA extraction protocols 

use large amounts of toxic solvents and/or sorbents8 and often involve numerous steps resulting 

in variable amounts of recovered DNA.10  

As an alternative to the aforementioned traditional methods, ionic liquids (ILs) and, more 

recently, magnetic ionic liquids (MILs) have been increasingly used as greener solvents for the 

extraction and preservation of nucleic acids.11-17 ILs are molten salts composed solely of ions and 

exhibit melting points below 100 ºC and tunable physical and chemical properties.18 MILs are a 

subclass of ILs that contain a paramagnetic component in their cationic and/or anionic moiety 

and respond to an applied magnetic field.19-22 MILs possess many of the same advantageous 
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properties of ILs such as low vapor pressure at room temperature, variable viscosity and 

solubility in water or organic solvents, unique solvation capabilities for both hydrophilic and 

hydrophobic compounds, and electrical conductivity.23 As a result of these characteristics, both 

IL and MIL-based extraction methods provide high extraction efficiencies for DNA. In addition, 

MILs have the ability to be collected with a strong external magnet, replacing time-consuming 

centrifugation steps. 

The majority MILs employed in DNA extractions contained the paramagnetic component 

in the anion.13,15 However, in a recent report, MILs possessing paramagnetic cations and chloride 

anions were investigated for the extraction of DNA.24 This class of MILs, initially soluble in 

aqueous solution, were able to undergo a metathesis reaction during the extraction to generate a 

hydrophobic MIL in situ, facilitating the rapid extraction of DNA. These MILs extracted 20 bp 

DNA, ~250-500 bp DNA and ~20 kbp DNA with high extraction efficiencies (>42%) using in 

situ dispersive liquid-liquid microextraction in combination to indirect detection methods.24  

When MIL-based DNA extractions are directly combined to PCR, customized PCR 

buffers are generally designed to alleviate the PCR inhibition caused by cationic and anionic 

components of the MIL.15,25 Despite the use of these buffers, quantitative PCR was not possible 

in the case of MILs containing Fe(III)-anions due to quenching of the fluorescence signal.26 To 

deeply understand the behavior of MILs and their structural components in fluorescence-based 

applications, fluorescence quenching mechanisms can be examined using Fӧrster Resonance 

Energy Transfer (FRET) or quantified using Stern-Volmer models.26 FRET evaluates the non-

radiative energy transfer from a fluorescent donor to a ground-state acceptor as defined by the 

overlap integral.26,27 Stern-Volmer plots represent the fluorescence signal when increasing 

concentration of quencher is added and constitute a method commonly used to determine the 
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magnitude and nature of fluorescence quenching.26,28,29 In a previously published study, both 

FRET and Stern-Volmer models were applied to MILs containing phosphonium cations and 

paramagnetic anion complexes in which different metals were coordinated with chloride or 

hexafluoroacetylacetonate (hfacac) ligands. Cyanine5 carboxylic acid (Cy5) was employed as 

the fluorophore in this study, which is fluorescent in its native form and when tagged to DNA. 

The authors found that Fe(III)- and Co(II)-based MILs strongly quenched the fluorescence 

signal.26 However, quenching was much less pronounced with MILs containing Mn(II) and were 

deemed to be more compatible for direct use in fluorescence-based assays.26 Other paramagnetic 

metal complexes have also been shown to quench fluorescence signals in different studies.30,31 

With regards to the use of MILs containing paramagnetic cations, no studies on their 

fluorescence quenching effects have been explored yet. 

In this study, fluorescence quenching of the SYBR Green I-double-stranded DNA 

(dsDNA) complex by the aforementioned new generation of MILs containing paramagnetic 

cations was investigated. The MILs studied contained four N-substituted imidazole ligands (N-

butylimidazole or N-benzylimidazole) coordinated to Ni2+ or Co2+ metal centers and chloride 

anions. The use of the selected fluorophore complex (SYBR Green I-dsDNA) provided an 

environment similar to fluorescence-based DNA detection methods. FRET and fluorescence 

quenching studies using Stern-Volmer models were performed to evaluate the quenching effects 

of the MILs in the system. NiCl2, CoCl2 metal salts and the 1-butyl-3-methylimidazolium 

chloride ([BMIm+][Cl-]) IL were employed as controls to better understand the components of 

the MIL structure that are responsible for quenching. 
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3.3. Experimental 

3.3.1. Chemicals, Reagents, Materials 

Double-stranded DNA (dsDNA; ~20 kbp salmon testes DNA) used in this study was 

purchased from Sigma-Aldrich (St. Louis, MO, USA). SYBR Green I (10,000×) was purchased 

from Life Technologies (Eugene, OR, USA). Tris(hydroxymethyl)aminomethane (Tris base) was 

purchased from Research Products International (Mount Prospect, IL, USA). Ultrapure water 

(18.2 MΩ·cm) was obtained from a Milli-Q water purification system (Millipore, Bedford, MA, 

USA). Disposable cuvettes made of poly(methyl methacrylate) (PMMA) and hydrochloric acid 

(ACS grade, 36.5-38.0%) were purchased from Fisher Scientific (Fair Lawn, NJ, USA).  

For the synthesis of the IL and MILs, the reagents cobalt(II) chloride (97%), 1-

butylimidazole (98%), 1-chlorobutane (99%), 1-methylimidazole (99%) as well as HPLC-grade 

ethyl acetate were purchased from Sigma-Aldrich. Nickel(II) chloride (98%) and 

benzylimidazole (99%) were purchased from Acros Organics (Morris Plains, NJ, USA). 

Anhydrous diethyl ether (99.0%) was purchased from Avantor Performance Materials Inc. 

(Center Valley, PA, USA). Deuterated dimethyl sulfoxide-d6 (DMSO-d6, 99.9%) was purchased 

from Cambridge Isotope Laboratories (Andover, MA, USA).  

Chemical structures of the IL, MILs and SYBR Green I dye used in this study are shown 

in Figure 1. Stock solutions of the MILs, IL and metal salts were prepared in 10 mM Tris-HCl 

buffer (pH 8) at the following concentrations: 10 mM, 1 mM and 0.1 mM for NiCl2, CoCl2, 

tetra(benzylimidazole)nickel (II) chloride ([Ni(BnIm)4
2+]2[Cl-]) and tetra(butylimidazole)cobalt 

(II) chloride ([Co(BIm)4
2+]2[Cl-]), 16 mM, 1 mM and 0.1 mM for tetra(butylimidazole)nickel 

(II) chloride ([Ni(BIm)4
2+]2[Cl-]) and 110 mM, 10 mM and 1 mM for [BMIm+][Cl-]. Stock 

solutions of the dsDNA and SYBR Green I were also prepared in Tris-HCl buffer at 

concentrations of 154 nM and 98 µM, respectively. 
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Figure 1. Chemical structures of the MILs, IL and fluorophore used in this study. (a) 

[Ni(BIm)4
2+]2[Cl-] and [Co(BIm)4

2+]2[Cl-], (b) [Ni(BnIm)4
2+]2[Cl-] (c) [BMIm+][Cl-] and (d) 

SYBR Green I.   

 

3.3.2. Instrumentation and Methods 

Steady-state absorption and fluorescence spectra were obtained using an Agilent 

Technologies 8453 UV-visible spectrophotometer and an Agilent Cary Eclipse fluorescence 

spectrophotometer (Santa Clara, CA, USA), respectively. Emission spectra were obtained with 

1-nm resolution and corrected for lamp spectral intensity and detector response. The excitation 

and emission slit widths were 5 nm and the photomultiplier (PMT) detector voltage was 550 V. 
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The samples were excited at 475 nm with the emission intensity recorded from 485 nm to 700 

nm. 

[BMIm+][Cl-] was synthesized and purified following a previously reported procedure.32 

The final product was characterized by 1H-NMR, with the spectra recorded in DMSO-d6 using a 

Bruker DRX 500 MHz nuclear magnetic resonance (NMR) spectrometer (Billerica MA, USA) 

(see Figure B1 of Appendix B). The MILs were synthesized and purified using previously 

reported methods.33  

Samples for fluorescence quenching experiments were prepared in 1-cm path length 

PMMA cuvettes. All samples were prepared in 10 mM Tris-HCl buffer (pH 8) and the total 

volume, dsDNA concentration, and SYBR Green I concentration were kept constant at 2 mL, 1 

nM and 1.96 µM, respectively. Stock solutions referred to in Section 2.1 were used to prepare 

the samples and were prepared in triplicate the same day as the experiment by mixing for 15 s 

using a vortex (Fisher Scientific). The exception was the dsDNA stock solution, which was 

stored in 10 mM Tris-HCl buffer at 4 ᵒC. The samples were prepared over a range of increasing 

concentration of the quenchers (NiCl2, CoCl2, [Ni(BIm)4
2+]2[Cl-], [Co(BIm)4

2+]2[Cl-] or 

[BMIm+][Cl-]). The concentration of the NiCl2 and CoCl2 salts ranged from 0 to 0.5 mM. The 

concentration of the [Ni(BIm)4
2+]2[Cl-] and [Ni(BnIm)4

2+]2[Cl-] MILs varied from 0 to 1 mM. 

The [Co(BIm)4
2+]2[Cl-] MIL concentration ranged from 0 to 0.1 mM and the concentration of 

the [BMIm+][Cl-] IL from 0 to 100 mM. 

3.4. Results and Discussion  

3.4.1. Quantifying Fluorescence Quenching of the SYBR Green I-DNA Complex 

Fluorescence quenching can be induced by a variety of molecular interactions such as 

excited-state reactions, complex-formation, energy transfer and collisional quenching.28 

Collisional (or sometimes called dynamic) quenching occurs as a result of collisions between an 
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excited-state fluorophore and quencher molecules.34 On the other hand, a reaction between the 

quencher in the ground-state and the fluorophore resulting in ground-state complex formation is 

defined as static quenching.34 These types of quenching are commonly described by Stern-

Volmer equations.28,35-37 Collisional quenching or static quenching is described by Eq. (1): 

𝐹0

𝐹
= 1 + 𝐾𝑆𝑉[𝑄]        Eq. (1) 

where F0 is the integrated fluorescence intensity of the corrected spectra when the concentration 

of quencher is 0, F is the integrated fluorescence intensity of the corrected spectra when the 

concentration of the quencher is [Q] and KSV is the Stern-Volmer quenching constant. If the 

Stern-Volmer plot of F0/F versus [Q] is linear, the Stern-Volmer quenching constant can be 

extrapolated from the slope with a “y-intercept” of 1. In general, a single class of fluorophores 

displays a linear Stern-Volmer plot, all of which have equal accessibility to the quencher. 

A deviation from linearity towards the “x-axis” is evident from a Stern-Volmer plot of 

F0/F versus [Q] when at least one of two (or more) populations of fluorophores are accessible to 

the quencher. These two populations can have different accessibilities to the quencher, with one 

fraction being accessible, a, and the other fraction buried, b, thus is inaccessible. The total 

fluorescence in absence of the quencher, F0, is equal to the fluorescence intensity of the two 

fractions, a and b, in absence of the quencher, Eq. (2)28,35,38: 

𝐹0 = 𝐹0𝑎 + 𝐹0𝑏        Eq. (2) 

This type of quenching is described by a modified form of the Stern-Volmer equation, Eq. 

(3)25,35,38: 

𝐹0

𝐹0 − 𝐹
=

1

𝑓𝑎𝐾𝑎[𝑄]
+

1

𝑓𝑎
        Eq. (3) 
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where F0 and F are the integrated fluorescence intensities of the corrected spectra when 

the concentration of the quencher is 0 and [Q], respectively. Ka is the Stern-Volmer quenching 

constant of the accessible fraction and fa is the accessible fraction of fluorescence available to the 

quencher. Ka and fa can be determined from a plot of F0/(F0-F) versus 1/[Q], which should be 

linear, with fa
-1 as the “y-intercept” and (faKa)

-1 as the slope. 

For quantifying fluorescence quenching of the SYBR Green I-dsDNA complex, Stern-

Volmer plots of the complex quenched by the NiCl2, CoCl2, [Ni(BIm)4
2+]2[Cl-], 

[Ni(BnIm)4
2+]2[Cl-] and [Co(BIm)4

2+]2[Cl-] MILs were constructed. The obtained plots are 

presented in Figures 2-4 and B4-B5 of Appendix B. The plots fit to the modified Stern-Volmer 

equation, Eq. (3), curving downward toward the “x-axis” at increasing concentrations of 

quencher. These results will be detailed in the following sections. 

Figure 2. Fluorescence quenching of the SYBR Green I-dsDNA complex as a function of 

[Ni(BIm)4
2+]2[Cl-] concentration. (a) Absorption spectra. (b) Fluorescence emission spectra, λ

ex
 

= 475 nm. Intensities were corrected for the absorption at the wavelength of excitation. (c) 

Steady-state Stern-Volmer plot of the integrate fluorescence intensity ratio (F0/F) as a function 
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of quencher concentration. (d) Steady-state modified Stern-Volmer plot of the integrated 

fluorescence intensity ratio (F0/(F0-F)) and as a function of 1/[Q].  

 

Figure 3. Fluorescence quenching of the SYBR Green I-dsDNA complex as a function of 

[Ni(BnIm)4
2+]2[Cl-] concentration. (a) Absorption spectra. (b) Fluorescence emission spectra, λ

ex
 

= 475 nm. Intensities were corrected for the absorption at the wavelength of excitation. (c) Steady-

state Stern-Volmer plot of the integrate fluorescence intensity ratio (F0/F) as a function of quencher 

concentration. (d) Steady-state modified Stern-Volmer plot of the integrated fluorescence intensity 

ratio (F0/(F0-F)) and as a function of 1/[Q].  
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Figure 4. Fluorescence quenching of the SYBR Green I-dsDNA complex as a function of 

[Co(BIm)4
2+]2[Cl-] concentration. (a) Absorption spectra. (b) Fluorescence emission spectra, λ

ex
 

= 475 nm. Intensities were corrected for the absorption at the wavelength of excitation. (c) Steady-

state Stern-Volmer plot of the integrate fluorescence intensity ratio (F0/F) as a function of quencher 

concentration. (d) Steady-state modified Stern-Volmer plot of the integrated fluorescence intensity 

ratio (F0/(F0-F)) and as a function of 1/[Q].  

 

3.4.2. Evaluation of the Contribution of Fӧrster Resonance Energy Transfer (FRET) to 

Fluorescence Quenching 

The rate of non-radiative energy transfer, 𝑘𝑇, from a donor to an acceptor was defined by 

Fӧrster by means of Eq. (4)4,5,17: 

𝑘𝑇 =
1

𝜏𝐷
(

𝑅0

𝑅
)

6

       Eq. (4) 

where R is the distance between the donor and acceptor molecules, τD is the fluorescence 

lifetime of the donor and R0 is the Förster critical transfer distance, defined by Eq. (5): 
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𝑅0
6 =

9000 ln(10)ɸ𝐷𝜅2

128𝜋5𝑛4𝑁𝐴 
∫

𝐹𝐷(𝑣̃)𝜀𝐴(𝑣̃)

𝑣̃4
𝑑𝑣̃

∞

0

       Eq. (5) 

where ɸ𝐷 is the quantum yield of donor fluorescence emission, 𝜅2 is the orientation factor and is 

equal to 2/3 for randomly oriented molecules, 𝑛 is the solvent refractive index, 𝑁𝐴 is Avogadro’s 

number, 𝐹𝐷(𝑣̃) is the donor fluorescence emission intensity normalized to unit area on a 

wavenumber scale, and 𝜀𝐴(𝑣̃) is the molar decadic extinction coefficient at wavenumber, 𝑣̃. Non-

radiative energy transfer can be determined by the overlap integral of the fluorescence emission 

spectrum of the donor and the absorbance spectrum of the acceptor, which is evaluated using R0. 

As representative examples, the overlap of the fluorescence emission spectrum of the 

SYBR Green I-dsDNA complex and the absorbance spectrum of NiCl2, CoCl2, 

[Ni(BIm)4
2+]2[Cl-], [Ni(BnIm)4

2+]2[Cl-] and [Co(BIm)4
2+]2[Cl-] are shown in Figure B2 of 

Appendix B, whereas the obtained R0 values are shown in Table 1. The R0 values obtained for 

the metal salts and the MILs were between 9.00-18.8 Å. When compared to the previous 

generation of MILs containing phosphonium cations and metal chloride or metal hfacac-based 

anions with Cy5 as the fluorescent donor, R0 values ranging from 14.2 to 58.1 Å were obtained 

for the metal salts and the MILs. Out of the studied quenchers, the highest overlap integral was 

observed for the Co(II) salt (with Cl- added to achieve a tetrahedral geometry around the metal), 

which indicated a significant contribution of fluorescence quenching through non-radiative 

energy transfer was possible. In the current study, R0 values less than 20 Å were obtained for all 

of the metal salts and MILs, which does not suggest that non-radiative energy transfer is an 

important process in the fluorescence quenching of the SYBR Green I-dsDNA complex. 

Therefore, the ability of the metal salts and this new generation of MILs to quench the 

fluorescence of SYBR Green I-dsDNA must be through spin-orbit coupling or excited-state 

electron transfer. However, our current work cannot distinguish between the two mechanisms, as 



www.manaraa.com

46 

 

 

it is beyond the focus of our investigation. It was still attainable to evaluate the effect of the 

metal salts and MILs on the SYBR Green I-dsDNA complex through fluorescence quenching 

studies, as is performed in the following Sections, 3.3.1 and 3.3.2, where increasing 

concentrations of the metal salts and MILs were added. 

 

Table 1. Fӧrster critical distances (R0) of the metal salts and MILs obtained using Eq. (5). 

Quencher R0 (Å) 

NiCl2 9.00 

CoCl2 14.1 

[Ni(BIm)4
2+]2[Cl-] 11.9 

[Ni(BnIm)4
2+]2[Cl-] 13.9 

[Co(BIm)4
2+]2[Cl-] 18.8 

 

3.4.3. Fluorescence Quenching of the SYBR Green I-DNA Complex by the MILs  

As previously mentioned, Figures 2-4 show the steady-state Stern-Volmer plots and 

modified Stern-Volmer plots for the fluorescence quenching of the SYBR Green I-dsDNA 

complex by the [Ni(BIm)4
2+]2[Cl-], [Ni(BnIm)4

2+]2[Cl-] and [Co(BIm)4
2+]2[Cl-] MILs. The 

modified Stern-Volmer plots were fit to Eq. (3) and the quenching parameters are presented in 

Table 2. From the intercept, a value of 0.65 ± 0.01 was obtained for fa for the two Ni(II)-based 

MILs, [Ni(BIm)4
2+]2[Cl-] and [Ni(BnIm)4

2+]2[Cl-]. This result indicates that approximately 65% 

of the SYBR Green I-dsDNA complex was accessible for quenching by the Ni(II)-based MILs 

and the other 35% was not affected by the MILs added in the concentration range from 0-1 mM 

(Figures 2-3). On the other hand, the intercept of the modified Stern-Volmer plot for the 

[Co(BIm)4
2+]2[Cl-] MIL yielded a fa value of 0.92 ± 0.01, meaning that the majority of the 
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SYBR Green I-dsDNA complex was available to the [Co(BIm)4
2+]2[Cl-] MIL quencher over the 

concentration range of 0-0.1 mM. As described in Section 3.4.1., the quenching constants of the 

accessible fraction, Ka, were 143 ± 20, 137 ± 20, and 265 ± 10 for the [Ni(BIm)4
2+]2[Cl-], 

[Ni(BnIm)4
2+]2[Cl-], and [Co(BIm)4

2+]2[Cl-] MILs, respectively (see Table 2).  

 

Table 2. The fraction of fluorescence accessible to the quencher (fa) and the Stern-Volmer 

quenching constant of the accessible fraction (Ka) for the metal salts and MILs 

obtained using Eq. (3). 

Quencher fa Ka (mM-1) 

NiCl2 0.61 ± 0.01 160 ± 10 

CoCl2 0.93 ± 0.01 181 ± 10 

[Ni(BIm)4
2+]2[Cl-] 0.65 ± 0.01 143 ± 20 

[Ni(BnIm)4
2+]2[Cl-] 0.65 ± 0.01 137 ± 20 

[Co(BIm)4
2+]2[Cl-] 0.92 ± 0.01 265 ± 10 

 

With regards to the two studied Ni(II)-based MILs  ([Ni(BIm)4
2+]2[Cl-] and 

[Ni(BnIm)4
2+]2[Cl-]), the fa and Ka values can be considered equal within experimental error (see 

Table 2). However, a change in the absorption spectrum of the SYBR Green I-dsDNA complex 

as higher concentrations of the [Ni(BnIm)4
2+]2[Cl-] MIL were added was observed, as shown in 

Figure 3. This possibly indicates quenching due to a static component from complex formation 

between the SYBR Green I-dsDNA complex and the [Ni(BnIm)4
2+]2[Cl-] MIL. The BnIm ligand 

of the MIL can interact with dsDNA through π- π stacking interactions, forming a non-

fluorescent ground-state complex, indicative of static quenching.28,40  

In order to ensure that all of the SYBR Green I dye was bound to dsDNA and that the 

two populations of fluorophores observed were not from quencher molecules interacting with 

excess of SYBR Green I, the fluorescence intensity of 1.96 µM SYBR Green I with 1 nM, 3.5 
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nM and 10 nM of dsDNA (in absence of any quencher) was recorded (Figure B3 of Appendix 

B). A student’s t-test concluded that the integrated fluorescence intensities of the corrected 

spectra for 1.96 µM SYBR Green I with 1 nM dsDNA compared to the 3.5 nM and 10 nM 

dsDNA were not statistically different (see Table B1 of Appendix B). This result indicates that 

all of the SYBR Green I dye in solution is bound to the dsDNA, and that the two populations of 

fluorophores observed in the quenching experiments were from two different populations of the 

SYBR Green I-dsDNA complex accessible to the quencher molecules. Thus, 1 nM dsDNA was 

used for all quenching experiments. 

3.4.4. Fluorescence Quenching of the SYBR Green I-DNA Complex by the Metal Salts 

To identify the component of the MILs responsible for the quenching of the SYBR Green 

I-dsDNA complex, Stern-Volmer plots were generated using the NiCl2 and CoCl2 as quenchers 

(Figures B4 and B5 of Appendix B). The Stern-Volmer plots of the metal chloride salts exhibited 

the same deviation from linearity towards the “x-axis” as the Stern-Volmer plots of the MILs 

and, therefore, they were also fit using Eq (3). If the quenching parameters of the MILs and the 

metal salts are compared, NiCl2 was found to have similar fa and Ka values as the 

[Ni(BIm)4
2+]2[Cl-] and [Ni(BnIm)4

2+]2[Cl-] MILs, within experimental error (see Table 2). This 

indicates that NiCl2 and the [Ni(BIm)4
2+]2[Cl-] and [Ni(BnIm)4

2+]2[Cl-] MILs have  roughly the 

same quenching effect on the fluorescence of the SYBR Green I-dsDNA complex. 

On the other hand, the quenching effect of the CoCl2 was less significant than the 

[Co(BIm)4
2+]2[Cl-] MIL, as indicated by the larger Ka value for [Co(BIm)4

2+]2[Cl-] (see Table 2). 

However, both the CoCl2 and the Co(II)-based MIL were characterized by a similar fa value 

(Table 2). As explained in Section 3.2., the R0 values of the metal salts and MILs were all found 

to be below 20 Å, therefore FRET is likely not a main contributor to the quenching effect and the 

mechanism of quenching must either be through spin-orbit coupling or excited-state electron 
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transfer. There could be a difference in quenching depending on the geometry of the MIL in 

solution although this also lies beyond the scope of the current study and was not investigated in 

further detail.  

3.4.5. Effect of the IL (No Metal) Control on the Fluorescence of the SYBR Green I-DNA 

Complex 

To study the effect of a non-magnetic IL on the fluorescence of the SYBR Green I-

dsDNA complex, Stern-Volmer plots were obtained by adding 0-100 mM of [BMIm+][Cl-] to the 

SYBR Green I-dsDNA complex. As shown in Figure 5, the Stern-Volmer plot was linear and fit 

to Eq. (1), yielding a KSV of 1.2 ± 0.2 M-1. This indicates that the [BMIm+][Cl-] IL has a 

negligible effect on the fluorescence of the SYBR Green I-dsDNA complex, and that the metal 

ions in the cation of the MIL structure are mainly responsible for the fluorescence quenching of 

the complex. 

3.5. Conclusions 

In this study, MILs containing the paramagnetic component in the cation and chloride 

anions were used in absorption and fluorescence emission spectroscopy to evaluate their 

suitability for use in fluorescence-based DNA applications. The SYBR Green I-dsDNA complex 

was used as the fluorophore in the assessment of the fluorescence quenching effects of the MILs 

themselves, and metal chloride salts and a non-magnetic IL for comparison.  

As predicted and confirmed through fluorescence quenching experiments, the metal 

(Co2+ or Ni2+) of the MIL was the main component in their structure responsible for quenching  
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Figure 5. Fluorescence quenching of the SYBR Green I-dsDNA complex as a function of 

[BMIm+][Cl-] concentration. (a) Absorption spectra. (b) Fluorescence emission spectra, λ
ex

 = 475 

nm. Intensities were corrected for the absorption at the wavelength of excitation. (c) Steady-state 

Stern-Volmer plot of the integrate fluorescence intensity ratio (F0/F) as a function of quencher 

concentration.  

 

of the fluorescence signal. As increasing concentration of quencher was added, it was found that 

the SYBR Green I-dsDNA complex provided an environment where two populations of 

fluorophores were present, both with different accessibilities to the quencher. This behavior was 

observed for all the MILs and the metal chloride salts. This new generation of MILs exhibited 

the large quenching constants, as observed by a significant reduction in the fluorescent signal 

when increasing amounts were added to the SYBR Green I-dsDNA complex. Our current work 

cannot distinguish between the two quenching mechanisms of these MILs as being spin-orbit 

coupling or excited-state electron transfer, however through the small overlap integral between 
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the absorption spectrum of each MIL and the emission spectrum of the SYBR Green I-dsDNA 

complex, it can be concluded that non-radiative Fӧrster resonance energy transfer is not 

significant. Therefore, it can be concluded that these types of MILs are not recommended for 

direct use in fluorescence-based assays.  

The Ni(II)-based MILs, [Ni(BIm)4
2+]2[Cl-] and [Ni(BnIm)4

2+]2[Cl-], quenched 

fluorescent signal equally, within experimental error. However, careful observation of the 

absorption spectra of the SYBR Green I-dsDNA complex with the [Ni(BnIm)4
2+]2[Cl-] MIL 

revealed a possible static quenching component, thereby rendering the use of the 

[Ni(BIm)4
2+]2[Cl-] MIL in fluorescence-based assays as a possibility. Based on the evaluation of 

these MILs with SYBR Green I-dsDNA as the fluorescent probe, it is recommended that caution 

be taken in using these MILs directly in fluorescence-based experiments. In PCR experiments in 

particular, customized PCR buffers containing metal chelators such as 

ethylenediaminetetraacetic acid (EDTA) can be designed to alleviate inhibition caused by the 

MILs if they are used in DNA extractions and directly added to the PCR buffer. This is similar to 

what was performed with previous generations of MILs which contained the metal in the 

anion.15,25  
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CHAPTER 4.    GENERAL CONCLUSIONS 

This thesis summarizes the application of a new generation of MILs containing 

paramagnetic cations for the extraction of dsDNA. Additionally, the fluorescence quenching 

effects of these MILs were evaluated using the SYBR Green I-dsDNA complex as the 

fluorescent probe. The MILs applied in these studies possess many advantageous properties such 

as facile and inexpensive to prepare, low viscosity of the MIL solution, in situ formation of the 

hydrophobic MIL during extractions and paramagnetic nature allowing for magnetic 

manipulation.  

Chapter 2 describes the extraction of dsDNA with MILs using in situ DLLME coupled to 

indirect detection using HPLC-DAD or fluorescence spectroscopy. A comparison to 

conventional MIL-DLLME using the water-immiscible MIL analogs was performed to 

demonstrate the beneficial effect of using the in situ approach. Higher extraction efficiencies 

were obtained using the in situ MIL-DLLME method compared to conventional MIL-DLLME. 

Extraction efficiencies were also higher using this generation of MILs compared to a MIL used 

in previous DNA extractions, [P66614
+][Ni(II)(hfacac)3

-]. In general, the developed in situ MIL-

DLLME method was also faster than other reported methods, with an extraction time of only 3 

min.   

Chapter 3 investigates the fluorescence quenching effects of this new generation of MILs, 

using a common DNA binding dye, SYBR Green I, bound with dsDNA as the fluorophore 

complex. Metal salts and an IL were used as controls to elucidate the origin in the MIL structure 

responsible for fluorescence quenching. Fitting the data to Stern-Volmer models revealed the 

presence of two populations of fluorophores, with different fractions of accessibility to the 

quencher molecules, as provided by the SYBR Green I dye intercalated within the dsDNA. The 
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ability of the MILs to efficiently quench the fluorescence signal was found to be through either 

spin-orbit coupling or excited-state electron transfer, as there was little overlap between the 

absorbance spectrum of each of the metal salts and MILs and the fluorescence emission spectrum 

of the SYBR Green I-dsDNA complex. Through evaluation of this data, the direct use of these 

MILs in fluorescence-based assays is not recommended, as they are shown to be strong 

quenchers. However, future work could test this claim in specific systems and design appropriate 

buffers through the addition of metal chelators or other reagents to potentially mitigate the 

quenching caused by these MILs.   
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APPENDIX A.    SUPPLEMENTAL INFORMATION ACCOMPANYING CHAPTER 2 

 

Table A1. Volumes of MIL and LiNTf2 stock solutions needed to produce a droplet using 

the in situ DLLME method for extraction of DNA. 

MIL applied for 

in situ DLLME 

Volume of the 

MIL stock 

solution added 

(μL)a 

Volume of the 

LiNTf2 stock 

solution added 

(μL)b 

Molar ratio of 

MIL:LiNTf2 

[Ni(BIm)4
2+]2[Cl-] 638 23 1:2 

[Ni(BnIm)4
2+]2[Cl-] 691 23 1:2.8 

[Mn(BIm)4
2+]2[Cl-] 800 23 1:2.5 

[Co(BIm)4
2+]2[Cl-] 805 29 1:2.5 

a The concentration of the MIL stock solution was 20 mg·mL-1 except for the  [Ni(BIm)4
2+]2[Cl-

] MIL, which had a concentration of 25 mg·mL-1. 

b    The concentration of the LiNTf2 stock solution was 600 mg·mL-1. 

 

Table A2. Amounts of MIL required for the conventional DLLME method for extraction of 

DNA. 

MIL applied for 

Conventional DLLME 
Amount of MIL added (µmol)a 

[Ni(BIm)4
2+]2[NTf2

-] 21 

[Ni(BnIm)4
2+]2[NTf2

-] 18 

[Mn(BIm)4
2+]2[NTf2

-] 21 

[Co(BIm)4
2+]2[NTf2

-] 21 

[Mn(OIm)4
2+][NTf2

-] 16 

[P66614
+][Ni(II)(hfacac)3

-] 15 

a Corresponds to 18 mg of MIL. 
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Table A3. Comparison of the extraction efficiency of DNA by the MILs using HPLC-DAD and fluorescence emission 

measurements at a 95% confidence level.  

MIL Fisher test Student’s t-test 

Fo
a
  Fc

b Result  to
c  tc

d Result  

[Ni(BIm)4
2+]2[Cl-] 5.942 5.050 Fo > Fc Unequal variances 1.749 2.365 to < tc Equal methods 

[Ni(BIm)4
2+]2[NTf2

-] 8.820 19.00 Fo < Fc Equal variances  0.5710 2.776 to < tc Equal methods 

[Ni(BnIm)4
2+]2[NTf2

-] 25.18 19.00 Fo > Fc Unequal variances  1.413 4.303 to < tc Equal methods 

[P66614
+][Ni(II)(hfacac)3

-] 3.296 19.00 Fo < Fc Equal variances 0.1104 2.776 to < tc Equal methods 
a Observed value of the Fisher test. 
b Critical value of the Fisher test at a 95% confidence level 19. 
c Observed value of the Student’s t-test. 
d Critical value of the Student’s t-test at a 95% confidence level 19. 

 

[1] D.C. Harris, Quantitative Chemical Analysis, 8th ed., W. H. Freeman and Company, New York, NY, 2010. 
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Table A4. Amount of MIL remaining in the aqueous phase after the in situ DLLME method. 

MIL applied for 

in situ DLLME 

Concentration of 

the MIL in the 

aqueous phase 

after extraction, 

Caq (mM) (n = 3) 

Concentration of 

the MIL used in the 

extraction, Co (mM) 

Percentage of the 

MIL in the 

aqueous phase 

after extraction, 

SMIL (%)   

[Ni(BIm)4
2+]2[Cl-] 7.0 ± 1.3 11.9 58.8 

[Ni(BnIm)4
2+]2[Cl-] 4.0 ± 0.8 8.57 46.7 

[Mn(BIm)4
2+]2[Cl-] 2.9 ± 0.8 12.0 24.2 

[Co(BIm)4
2+]2[Cl-] 4.7 ± 0.7 12.1 38.8 
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Figure A1. Scheme for the conventional DLLME method using MILs for the extraction of 

DNA. 
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Figure A2. Extraction efficiencies (% EF) of ~20 kbp stDNA by each of the MILs using (a) 

MIL-based in situ DLLME or (b) conventional MIL-DLLME and HPLC-DAD detection. 

Experimental conditions (n = 3): 2 nM DNA, 2 mL total extraction volume, 15-24 µmol MIL, 300 

µL dimethylformamide dispersive solvent, 3 min vortex at 2100 rpm. Note: For in situ DLLME, a 

range of 1:1.5 to 1:2.8 molar ratio of MIL:[Li+][NTf2
-] was used, depending on the MIL. For the 

[P66614
+][Ni(II)(hfacac)3

-] MIL, no dispersive solvent was used. 
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Figure A3. Comparison of extraction efficiencies (% EF) obtained using HPLC-DAD (blue) 

and fluorescence emission spectroscopy detection (orange). ~20 kbp stDNA was extracted by each 

of the MILs using (a) MIL-based in situ DLLME or (b) conventional MIL-DLLME and HPLC-

DAD detection. Experimental conditions (n = 3): 2 nM DNA, 2 mL total extraction volume, 15-

24 µmol MIL, 300 µL dimethylformamide dispersive solvent, 3 min vortex at 2100 rpm. Note: 

For in situ DLLME, a range of 1:1.5 to 1:2.8 molar ratio of MIL:[Li+][NTf2
-] was used, depending 

on the MIL. For the [P66614
+][Ni(II)(hfacac)3

-] MIL, no dispersive solvent was used. 
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Figure A4. Agarose gel (1% w/v) electrophoresis separation confirming the size of the sheared 

salmon testes DNA (stDNA) fragments (lane 1) compared to a 1 kb DNA ladder (lane 2). stDNA 

was sheared for 60 cycles (1 cycle: 30 s on and 30 s off) through sonication in an ice bath. 
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Figure A5. Confirmation of the annealed 20 bp DNA sequence; (a) Chromatographic overlay 

after HPLC-DAD detection of a 2 nM standard of the annealed 20 bp DNA (blue) and both 

complementary 20-mer DNA oligonucleotides that have not undergone the annealing process 

(orange). (b) Melt curve of annealed 20 bp DNA (orange), oligo 1 only (gray), oligo 2 only 

(yellow), both oligos not annealed (light blue) and a negative control (dark blue). Melting 

temperature, Tm (IDT Specification Sheet; 50 mM NaCl) = 58.0 °C, Tm (experimental; 100 mM 

NaCl) = 56.50 °C.  
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Figure A6. (a) Raman spectrum of the [Mn(BIm)4
2+]2[Cl-] MIL precipitate (blue), 

manganese(II) oxide (MnO; gray) and manganese(II,III) oxide (Mn3O4; orange). The peak at 650 

cm-1 is related with Mn-O vibrations. (b) X-ray diffraction pattern of the [Mn(BIm)4
2+]2[Cl-] MIL 

precipitate (blue), MnO (gray) and Mn3O4 (orange).   
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Figure A7. Standard addition plots for the determination of the metal concentration in the 

aqueous phase after in situ DLLME using flame atomic absorption spectroscopy. (a) 

[Ni(BIm)4
2+]2[Cl-] MIL, (b) [Ni(BnIm)4

2+]2[Cl-] MIL, (c) [Mn(BIm)4
2+]2[Cl-] MIL, (d) 

[Co(BIm)4
2+]2[Cl-] MIL. 
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APPENDIX B.    SUPPLEMENTAL INFORMATION ACCOMPANYING CHAPTER 3 

 

Figure B1. 1H NMR spectrum of [BMIm+][Cl-]: 1H NMR (500 MHz, DMSO-d6) δ 9.35 (s, 

1H), 7.82 (t, J = 1.6 Hz, 1H), 7.75 (t, J = 1.7 Hz, 1H), 4.18 (t, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.81-

1.71 (m, 2H), 1.31-1.21 (m, 2H), 0.93-0.86 (m, 3H). 

  



www.manaraa.com

69 

 

 

 

Figure B2. Fluorescence emission spectrum of SYBR green I-DNA (orange) and absorbance 

spectrum (blue) of (a) NiCl2, (b) [Ni(BIm)4
2+]2[Cl-], (c) CoCl2, (d) [Co(BIm)4

2+]2[Cl-] and (e) 

[Ni(BnIm)4
2+]2[Cl-] with unit area on the wavenumber scale. The Fӧrster overlap integral of the 

fluorescence emission spectrum and absorbance spectrum is required for the calculation of 

Fӧrster critical distance (R0), the critical transfer distance between the fluorescent donor and 

acceptor. 
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Figure B3. Fluorescence emission spectra of SYBR Green I-DNA complex, λ
ex

 = 475 nm. 

Intensities are corrected for the absorption at the wavelength of excitation. 1.96 µM SYBR 

Green I dye was used in all cases with with 1 nM (blue), 3.5 nM (orange) and 10 nM (gray) of 

stDNA.  
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Figure B4. Fluorescence quenching of the SYBR Green I-dsDNA complex as a function of 

NiCl2 concentration. (a) Absorption spectra. (b) Fluorescence emission spectra, λex = 475 nm. 

Intensities were corrected for the absorption at the wavelength of excitation. (c) Steady-state 

Stern-Volmer plot of the integrate fluorescence intensity ratio (F0/F) as a function of quencher 

concentration. (d) Steady-state modified Stern-Volmer plot of the integrated fluorescence 

intensity ratio (F0/(F0-F)) and as a function of 1/[Q]. 
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Figure B5. Fluorescence quenching of the SYBR Green I-dsDNA complex as a function of 

CoCl2 concentration. (a) Absorption spectra. (b) Fluorescence emission spectra, λex = 475 nm. 

Intensities were corrected for the absorption at the wavelength of excitation. (c) Steady-state 

Stern-Volmer plot of the integrate fluorescence intensity ratio (F0/F) as a function of quencher 

concentration. (d) Steady-state modified Stern-Volmer plot of the integrated fluorescence 

intensity ratio (F0/(F0-F)) and as a function of 1/[Q] 
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